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Finite-size scaling spectra in the six-states quantum chains 

G Schiitzt 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, Federal Republic 
of Germany 

Received 17 February 1988, in final form 26 September 1988 

Abstract. The finite-size scaling spectra of the six-states quantum chains with D, symmetry 
are studied numerically in the massless phase. At least three values of the central charge 
c of the Virasoro algebra are found: c = 1, 1.25 and 1.3. On the self-dual line, one finds, 
in the c = 1 region, N = 2 superconformal invariance. In the c = 1.25 region there is a line 
where N = 1 superconformal and Zamolodchikov-Fateev symmetry is observed. The 
occurrence of higher symmetries is also discussed. 

1. Introduction 

The n-states models have a long history in statistical mechanics (JosC eta1 1977, 
Kadanoff 1979, Fradkin and Kadanoff 1980, Nienhuis 1984). Their transfer matrices 
are related to one-dimensional quantum chains. In this paper we study the critical 
behaviour of the self-dual six-states quantum chain with next-neighbour interaction, 
for N sites defined by the D,-symmetric Hamiltonian (von Gehlen and Rittenberg 
1986b) 

i N  

H = - l  c [ ai + a: + E (a; + a;) + Sa: 5 i = l  

+A(r,rj+, +rjri+,+ & ( r ~ r ~ + , + r ~ r ~ + , ) + ~ r ~ r ~ + , ) ]  (1.1) 

(rN+,lm = Emnry.  (1.2) 

with the boundary condition 

The matrix E"', specifying the boundary condition, and the normalisation 6, which 
fixes the Euclidean timescale, will be discussed below. A plays the part of the inverse 
temperature, E and S are coupling constants, a and r are given by the matrices 

U =  

' 1 0 0 0 0 0  
o w o o o o  
0 0 w 2 0  0 0 
0 0 0 w 3 0  0 
0 0 0 0 w 4 0  
, 0 0 0 0 0 w  

I r =  

'0 0 0 0 0 l q  

)I 
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
, 0 0 0 0 1 0  

w = e x p ( 2 ~ i / 6 ) .  
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For specific values of the coupling constants, on which depends the global symmetry 
of H (Badke eta1 1985) one obtains different known models, e.g. for E = 6 = 1 the 
six-states Potts model or for E = S = 0 the vector Potts models. It turns out that the 
coupling constants determine the critical behaviour of the chain. 

In the past five years the understanding of phase transitions of two-dimensional 
systems has developed enormously. The concept of universality has changed and 
become more precise in the light of modular invariance (an example with be given 
here). All the unitary conformal field theories, underlying certain models in statistical 
mechanics with central charge c < 1 of the Virasoro algebra, can be classified (Belavin 
et a1 1984, Friedan et al 1984, Cardy 1986, Cappelli et a1 1987). 

Subsequently much attention has been paid to the classification of two-dimensional 
conformally invariant theories with central charge of the Virasoro algebra c 3 1. Higher 
symmetries beyond conformal invariance restrict the central charge of unitary theories 
to certain quantised values and allow the calculation of all possible anomalous 
dimensions and multipoint correlation functions. Thus the investigation of infinite Lie 
algebras in two dimensions turns out to be crucial for the complete understanding of 
conformal field theories. 

However, following this concept, one does not know in which particular physical 
system a certain symmetry is realised or whether it is realised at all. One has a theory, 
but no ‘experiment’ to which it may be applied. In this paper we choose the by now 
well established inverse philosophy and start with a particular model, the six-states 
quantum chain (1 . l ) ,  by investigating the operator content numerically under applica- 
tion of finite-size scaling methods. In a second step we examine which infinite Lie 
algebras determine the spectrum we observed numerically. As any kind of ‘experiment’ 
this method provides the possibility of discovering new interesting phenomena not yet 
taken into consideration from the purely theoretical point of view. 

Indeed, while in earlier days the six-states model was thought to be only Gauss 
type (Fradkin and Kadanoff 1980), our observations show that there are different types 
of second-order phase transitions. We find a system with varying central charge c and 
a curve in the space of coupling constants with c = where the model exhibits N = 1 
supersymmetry ( SUSY) and Zamolodchikov-Fateev (ZF) symmetry. We will clarify the 
connection between these two symmetries in terms of character identities. Furthermore 
we will observe N =  1 and N = 2  SUSY in a region with c = 1. Here a more thorough 
investigation of the operator content will lead to representations of a new algebra 
which contains the N = 2 superconformal algebra as a subalgebra. 

The paper is organised as follows. In § §  2 and 3 we discuss the phase diagram of 
the Hamiltonian (1.1) and the boundary conditions and symmetries of the system. 
Section 4 briefly reviews some known consequences from conformal invariance, its 
N = 1 and N = 2 supersymmetric extensions and from ZF symmetry. Furthermore the 
character identities of the N = 1 SUSY and Z F  symmetry at c = $ will be given. In § 5 
we present and discuss the full operator content of (1.1) with special values of the 
coupling constants for free and all toroidal boundary conditions and discuss the results. 
Finally in 9 6 our results will be summarised. 

2. Phase diagram of the six-states quantum chain 

The aim of this paper is a more thorough examination of the model at the critical 
temperature A = 1 in the region of ferromagnetic interaction which is defined by 

E > - l  E > -f( 1 +26)  6 > -2 .  (2.1) 
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Figure 1. Parameter plane of the Hamiltonian (1.1). Line F,F2F,F, marks the’border of 
the ferromagnetic domain of interaction ( I ) .  A region of central charge c = 1.25 is marked 
by A. Along the dotted line S , S 2 ,  including the ZF point Z, we find N = 1 superconformal 
and ZF invariance. In region B, bounded by B , B 2 ,  with the vector Potts point V the model 
has c = 1 and exhibits N = 2 supersymmetry. The arrow points to D, where the system 
decouples into the Ising and three-states Potts model. 

Figure 1 shows the corresponding part of the phase diagram in which the ferromagnetic 
domain is limited by the line F1FZF3F4. 

The parameters E and S determine the critical properties of the Hamiltonian (1.1). 
Already, numerical examinations by von Gehlen and Rittenberg (1986b, 1987) have 
come to the result that, at the critical temperature A = 1 for three special values of the 
coupling constants ( 8  = 1, = 0, s2 =+, E~ = z ) ,  the central charge is c = 4. Moreover, 
for S = 1, E = 0 there appear anomalous dimensions,. which are near to those given by 
the highest weight representations of the N = 1 super-Virasoro algebra (see below). 

On the other hand Zamolodchikov and Fateev (1985) constructed two-dimensional 
conformal field theories, which are self-dual and Z,, symmetric, and where the central 
charge c = 2 if n = 6. The anomalous dimensions found by von Gehlen and Rittenberg 
are predicted by this theory, though for different values of the coupling constants 
( E  = l /d3 ,  6 =4) (Alcaraz 1987a, b). At this point ( Z  in the plane of parameters: figure 
1) Alcaraz computed numerically c =: and also some of the anomalous dimensions 
observed by von Gehlen and Rittenberg. 

The connection between these results has already been clarified (Schiitz 1987). The 
spectrum of the Hamiltonian (2.1) for free boundary conditions on the curve S,S, 
(figure 1) is N = 1 supersymmetric. Here the central charge and the critical exponents 
remain constant. The curve contains the ZF point Z, runs close past E = 0, 6 = 1 (see 
above) and is embedded in a region A with c = :. However, neither the operator content 
for all toroidal boundary conditions nor the relation between N = 1 S U S Y  and ZF 

5 
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symmetry have been studied yet. This will be done in O B  3 and 4. The critical exponents 
of the order parameters and the thermal exponent on this curve are the same as those 
of some critical points in the series of RSOS models (labelled by an integer p > 1) 
(Andrews et a /  1984), which remains true for the complete series of Z, models of 
Zamolodchikov and Fateev with n = p .  Andrews et a1 have been able to solve the RSOS 

models exactly on a two-dimensional subspace in a larger space of parameters. For 
each model they found two distinct manifolds, each of them being divided into two 
phases by a line of critical points. So there are four different regimes I, 11, I11 and IV 
with critical lines A between I and I1 and B between I11 and IV respectively. The 
series of lines B describing a second-order phase transition from a N- to a ( N  - 1)-phase 
coexistence have been identified with the series of unitary conformal field theories 
with c < 1 found by Friedan et a1 (1984) (see also Huse 1984). As mentioned above, 
along the other line A the exponents of the ( p  - 1)-order parameters and the thermal 
exponent are that of the 2, theories of ZF, which are measured for the six-states case 
along line SlS2 (figure 1) with c = f .  This multicritical transition is the continuous 
melting of a so-called p x 1 commensurate phase (Huse 1984). On the transition line 
the model has a Z,, symmetry: the line separates an area of N-phase coexistence from 
a disordered phase. For a complete description of the model see Andrews et a /  (1984) 
and Huse (1984). 

Moreover a region B with c = 1 has been found (von Gehlen et a1 1988). It is 
limited by the line BIB2 and contains the Z, vector Potts point V ( E  = 6 = 0). In that 
paper the operator content of all 2, theories (n > 4) in the c = 1 region is conjectured 
and compared with finite-size scaling estimates. These Z, models show a critical fan, 
i.e. a massless phase in an interval l / A m a ,  S 1 G A,,, . The critical exponents are constant 
with respect to the coupling constants but are functions of A. As the value of the 
central charge c = 1 suggests, they are given by the Gauss model (Di Francesco et a1 
1987 and references therein): 

A = ( M  i. gN)2/4ng 

g( 11 Amax) = 4/ n g(1) = 1 g(Amax) = n/4* (2.3) 

(2.2) 

where g is a monotonic function of A such that 

The form of this function depends on the coupling constants (von Gehlen et a1 1988). 
As an example, consider the leading magnetic exponents xQ in the charge sector Q 
which turn out to be 

XQ = X,-Q = ~ A Q  = Q2/2ng 

2 Q 2 / n 2 s  X Q S  Q2/8 (2.5) 

Q = l , 2  , . . . ,  [n/2]. (2.4) 

Thus 

which recovers a known result (Elizur et a1 1979, Cardy 1978). In addition to the part 
of the spectrum described by the Gauss model there are sectors with 

A = & + m  (2.6) 

where m is integer or half-integer. This corresponds to an irreducible representation 
of the twisted U( l )  Kac-Moody algebra (von Gehlen et a1 1988). 

Here we will show that, at A = 1, the six-states model has N = 2 SUSY and a new 
symmetry which contains the N = 2 superconformal algebra as a suba!gebra. 
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Choosing the coupling constants as E =2u/3&,  6 = u / 2 ,  one reaches in the limit 
u + m  the point D where the system decouples into the Ising and three-states Potts 
model with central charge c =f+:= 1.3. Since the operator content of these models 
is known, it is trivial to calculate it for this choice of coupling constants. 

Between these special values of the coupling constants the central charge as well 
as the critical exponents change. However, there is no marginal operator which can 
explain this phenomenon. That means that it is not possible to formulate a field theory 
which describes the system in the whole ferromagnetic region of interaction. Addi- 
tionally the question arises of how can the central charge change in dependence on 
the coupling. The crossover from c = 1 to c = 2 is going to be discussed in a separate 
paper. In this paper we will discuss in detail the infinite-dimensional symmetries of 
the Hamiltonian (1.1) in the large-N limit at the critical temperature A = 1 in the region 
B and along curve SISz and present the spectrum for free and all toroidal boundary 
conditions. 

3. Boundary conditions and symmetries 

The Hamiltonian H with boundary condition B (2.2) is now called H B .  Due to the 
D6 symmetry characterises one of the twelve matrices: 

I 

B = Z d C k  Q = O , .  . . , 5  k = 0 , 1  (3.1) 

with 

z = = 86-m,n  m , n = l ,  . . . ,  5.  

The 2' form the cyclic group 2 6  and C is the charge conjugation matrix. Together 
they form a reducible representation of the dihedral group D6. The global symmetry 
of H depends on B ;  as is easily seen, H is invariant under the transformation A 

if A commutes with B. Here A again is one of the twelve matrices above. The spectrum 
of H depends only on the conjugacy class of D6 that B belongs to. In table 1 the 
symmetry group U c D6 built by the matrices A for each boundary condition is shown. 

According to the irreducible representations ( IR)  of the symmetry U the Hamil- 
tonian splits into block matrices H E ,  called sectors (table 1). 

Table 1. Possible boundary conditions and corresponding symmetries of the Hamiltonian 
defined by (1.1). Column 3 gives the notation of the possible sectors. In rows 1-3, Q 
denotes the 2, charge and * the eigenvalue of charge conjugation. In row 4 the eigenvalues 
of Z3 and of B are marked by *. 

Boundary condition Symmetry Spectra 

0 

ZQ 0 = 0 , 3  
If$,* Q = 0 , 3  

Q = 1 , 2 , 4 , 5  



736 G Schutz 

If B = 0 (free boundary condition), B = 1 (periodic) or B = X3 (antiperiodic) we 
find D, as symmetry. The 26 subgroup permits a prediagonajisation into six charge 
sectors with eigenvalues Q = 0, . . . , 5  of the charge operator Q: 

N d = C  qi (mod 6) 
i = l  

(3.3) 

with q = ( i  - 1 ) ~ 3 ~ ~ ,  i = 1, . , . ,6 .  D6 has two irreducible two-dimensional representations 
D,, Q = 1,2: 

(3.4) 

They mix sectors 1 and 5 as well as 2 and 4, so that 

HI = Hs H2= H4. ( 3 . 5 )  

Furthermore there are four one-dimensional representations D , ,  , Q = 0,3, 

DQ,*(X') (-I),' DQ,*(C) = +1 (3.6) 

which split the charge sectors 0 and 3 into two subsectors with positive and negative 
charge conjugation. 

If B = e,, Q = 1,2 ,4 ,5  (cyclic boundary conditions), the symmetry is Z6 and only 
a prediagonalisation into the six charge sectors is possible. 

Finally, for B = X4C, 4 = 0, . . . , 5 ,  the symmetry remains Z,OZ,, as B commutes 
only with itself and with X3. It follows, because of B2 = 1, that even and odd Z6 charges 
(E3=  *l) with B eigenvalues *l are split into sectors. Since H o c  = H2' = H4c  and 
H l C  = H 3 c  = H s c  we consider only Hoc and H3' where U = (1, 13, C, Z3C} with 
sectors Hi!c and HT3,C respectively. 

Fortunately not all these matrices are independent from each other: because of 
self-duality and invariance under charge conjugation only the following 25 (instead 
of 72) sectors are different at h = 1: 

3c 

H L  H : = H :  H;= H,' H<* 

HE,* H:,* = Hi,* H:,* 

HO - HO 5 - H i = H A  - H t = H : = H : = H i  
H : = H i = H : = H :  H : = H i = H : = H :  

HI 1 -  - HI 5 -  - H s  1 4  - H : = H : = H i = H :  
H ' - H ' - H ~ = H : = H : = H : = H ~ = H :  2 -  4 -  

(3.7) 

3c H ::* H !:* = H ::* H-,*. 

In addition H is parity and translationally (P) invariant. Thus we finally obtain 
matrices H S '  for free and H E ( P )  for toroidal boundary conditions. The eigenvalues 
which belong to them are called E, (N)  or E,(P, N )  respectively; k means a certain 
energy level, while N denotes the number of the sites. 

4. Supersymmetry and Zamolodchikov-Fateev symmetry 

In order to settle the connection between the eigenvalues of H and the representations 
of the Virasoro algebra we consider, first for free boundary conditions, the quantities 
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(Cardy 1984, 1986, von Gehlen and Rittenberg 1986a) 

%k = N-PCO lim ( N /  r ) (  E k (  N )  - EF) (4.1) 

where EF( N )  is the lowest eigenvalue in spectrum Hc2( N ) ,  which means the ground 
state of H F  for N sites. The %k define the finite-size spectrum of HF.  As a consequence 
from conformal invariance these quantities are given by the unitary I R  of the Virasoro 
algebra: 

[ ~ n ,  L ~ I =  ( n  - m ) L + m  + A c ( n 3  - n)an+m,o n , m E Z  (4 .2)  
with central charge c. An I R  is characterised by its highest weight which is a so-called 
primary field with scaling dimension A: 

Lob) = A l a )  L,lA) = 0 n > 0. (4.3) 
Excited states, which we will call descendants of IA) with scaling dimension A + r, 

0 < rl  r2 . . . (4.4) 

where x = A +  r is a surface critical exponent giving a contribution to the spectrum (4.1) 

are generated by the operators L-, : 

Lo( L-,, Lr2 . . .)lA) = ( A  + r ) (  L-,, Lr2 . . .)IA) 

% k = A + r  (4.5) 

with a certain (known) degeneracy d ( A ,  r )  and relative parity (-l), to \A) .  
In the case of toroidal boundary conditions the finite-size spectrum is defined by 

Here E F ( N )  is the lowest eigenvalue in sector H:,+. The critical exponents x = %k(k(p) 
now are given by the I R  ( A +  r, A +  T) of two commuting Virasoro algebras L, L: 

x = A + r + A + i  (4.7) 

with momentum P = ( A  + r )  - ( A  + J) and spin s = A - A. 
For unitary theories with c < 1 the central charge is quantised and there exists only 

a finite number of highest weight I R  to each value of c (Friedan eta1 1984). Thus, 
once c is known for a particular model, all the critical exponents determining its 
singular behaviour or, in the language of the field theory, all the anomalous dimensions 
of the scaling operators can be computed. As already mentioned, Andrews et a1 (1984) 
have found a set of exact multicritical points corresponding to this series. 

For c k 1 unitarity does not impose any restrictions on the values of the anomalous 
dimensions. However, if higher symmetries (e.g. SUSY) occur, one obtains new quantisa- 
tion conditions, in particular for c 3 1 ,  which allow a classification of such theories. 

The N = 1 superconformal algebra consists of the Virasoro algebra (4.2) together 
with the fermionic operators G (Friedan et a1 1985, Berdshadski et al 1985, Eichenherr 
1985): 

with r, s E E in the Ramond sector (R) and r, s E E +; in the Neveu-Schwarz sector 
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(NS). By the demand for unitarity the central charge is quantised if c <+: 

m > 2. 
3 12 
2 m ( m f 2 )  

c = - -  

Then the following anomalous dimensions are possible: 

[ p (  m + 2) - qm]' -4  1 - (-1)P-4 + 
8m(m+2)  32 AP,4 = 

(4.9) 

(4.10) 

with 1 < p  s m, 1 < q 
For m = 4  ( c = l )  we obtain 

m + 2; p - q is even in the NS sector and odd in the R sector. 

0 ' 1 1  
NS 7 6 9  9 16 

R 24, 8, 16, 16 
1 3 1 9  

and for m = 6 (c = $) the dimensions are 
0 ' 3 l l S 1 3 3 J  

NS 5 6 9  9 4, 12, 49 32, 32, 32 

R - 5 232fig12_1_9 
96,323 32,969 32,169 163 16,16* 

(4.11) 

(4.12) 

The degeneracies of level r representations D ( A ,  r )  are given by the characters of 
A (Goddard et al 1986): 

(4.13) 

where 

(4.14) 

with 

M = 2m(m +2) 

1 = ( m  + 2 ) p  - mq 

i = ( m + 2 ) p + m q  

(for m, p ,  q see (4.9) and (4.10)). 
N = 1 supersymmetric models known up to now are the tricritical Ising model 

(m = 3) (Friedan et al 1985), the Ashkin-Teller model for special values of the coupling 
constants (m = 4) (Baake et aZ1987, Yang and Zheng 1987), and the six-states quantum 
chain (2.1) on the curve S!S2 (figure 1) with m = 6 (Schutz 1987). 

?%e N = 2  superconformal algebra is achieved by combination of the Virasoro 
algebra with the U( 1) Kac-Moody algebra (Di Vecchia et aZ 1985, Waterson 1986, 
Boucher etal 1986) 

(4.15) 
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together with the following commutation and anticommutation relations: 

(4.16) 

{ G l, G ;> = 2 Lk+ I + ( k - 1 ) Tk+ I J C  ( k2 - a) k+ i,o 

where k, I E E for the Ramond sector and k, I E E -4 for the Neveu-Schwarz sector. 
The IR are given by a highest weight A and a charge q related to the eigenvalue of To. 
They are denoted by (A; q ) .  Unitary representations exist for 

c = 1 +2( p - l ) / (p+  2) P’O (4.17) 

with I R  

(4.18) 

Here a = 0 in the NS sector, a = *; in the R sector and 0 d 1 d p .  m ranges from - p  to 
p ,  or according to the symmetry properties of the characters x{,y’ (Ravanini and Yang 
1987a) 

( P , Q )  (4.19) xj,y) - (P..)  

one has - p  - 1 d m G p + 2. 1 and m must obey I - m = 0 mod 2. The characters can 
be written (Ravanini and Yang 1987a) 

- X p - i . p + 2 + m  = X I , ~ + ~ Z ( ~ + Z )  

where the theta functions are defined by 
Zkn2  kn 

@ m , k ( T ,  v) = 1 Y 
n ~ Z + m / 2 k  

z = exp(2.rri.r) y = exp(2n-iv) 
(4.21) 

and Cj,: are the string functions of the affine su(2) algebra which are Hecke indefinite 
modular forms (see 4.28). 

For c =  1 (3.19) gives 

NS (0; O), (k *5) 
RF (3; *L) 2 3 (1. 24, * i )  3 (L 24 ,  $) 6 * 

Their characters can be decomposed into N = 1 characters: 

(0; o ) y =  (o )ys+( l )ys  
(b; q)* ( d 1  

(3; q)F=2(3)P 

(k; 9 )  P = (&) P. 

[+51:=(id1 -(id1 + ( 3 P  

N S =  1 NS 

Notice that 
1 N S -  1 R 

(4.22) 

(4.23) 

(4.24) 
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is the representation of the twisted N = 2 superconformal algebra with c = 1 (Rittenberg 
and Schwimmer 1987). 

N = 2 supersymmetry is known to appear in the Ashkin-Teller model (Baake et al 
1987, Yang and Zheng 1987). 

Recently Zamolodchikov and Fateev (1985) described a family of two-dimensional 
conformal field theories, which are symmetric under a fractional spin (non-local) 
current algebra. They correspond to Z,-symmetric self-dual models at the critical point 
and are a generalisation of the critical Ising model (n = 2), where the Majorana fermion 
is replaced by non-local analytic fields, called parafermions. 

The central charge of the ZF theories is given by 

c = 2( n - 1)/( n + 2) (4.25) 

and the anomalous dimensions characterising these theories are 

(4.26) 

The integers 1, m obey O S l S n ,  - n + l S m S n  and I - m = O  mod2. For n = 6  the 
dimensions are 

(4.27) 

The characters ~ f :  of the representations of the ZF algebra are given by the string 
functions cl,? (Gepner and Qiu 1987, Gepner 1987) 

xl,m(z) c~ , ’~(z)T(z)  

with the Dedekind q function: 
m 

q(z)=z1/24 JJ (1-z”) .  
n = l  

(4.29) 

The parafermionic primary fields (order and disorder parameters vl, p I ,  1 = 0, . . . , n - 1, 
which are the generalisations of the spin fields of the Ising model have critical exponents 

l(n - 1 )  
h, =- 

n ( n + 2 ) ’  
(4.30) 

All the other primary ZF fields (4.26) (which are infinitely many if n > 4) are obtained 
from cr,, pl by applyig successively the generators of the parafermionic current algebra 
(Zamolodchikov and Fateev 1985, Gepner and Qiu 1987). Due to their Z,, symmetry 
the fields A t f i )  carry a Z,,@Z,, charge (p, q )  which is given by (Gepner and Qiu 
1987) 

(4.31) 

After this brief review (for more details see Zamolodchikov and Fateev (1985) and 
Gepner and Qiu (1987)) we specialise to some applications. We notice that s = A - A = 
Q d / n  = -pq/n and conclude p = Q, q = -0 mod 6. Thus, if a representation with 
charge (Q, -6) appears in the spectrum of HQ ( l . l ) ,  then the theory predicts it to be 
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found in the segtor H$. Invariance of the theory under charge conjugation p + - p  or 
Q+ -Q respectively and self-duality recover (3.7). 

For n = 6 we obtain the same central charge c = i as for N = 1 supersymmetry with 
m = 6. This suggests we cast a glance at the highest weights (4.27) and (4.12) of the 
corresponding algebras. Using (4.13) and the explicit formula for the string functions 
c j , z (q )  (4.29) we derive the following identities: 

(4.32) 

These relations will turn out to be necessary for the interpretation of the spectra in 0 5. 

5. Operator content of the six-states quantum chain 

We are now in a position to determine the operator content of the model (1.1). Applying 
the Lanczos method (Lanczos 1950) the eigenvalues & ( N )  (4.1) and &(P, N) (4.6) 
can be calculated numerically for chains of length N up to 7 or 8 sites, dependent on 
the sector. The limits gk are then computed using the algorithm of Bulirsch and Stoer 
(1964). The errors given are very subjective due to the nature of the extrapolation 
algorithms for this kind of problem. They are obtained by studying the variation of 
the approximants with a free parameter entering the algorithm of Bulirsch and Stoer 
(for more details see Henkel and Schiitz (1988)). The calculations have been done in 
all the sectors for up to 30 levels per sector. In order not to flood the paper with tables 
not all the numerical results will be presented. However, it turns out that the general 
agreement with (4.11), (4.12) and (4.27) is excellent. A typical example is the spectrum 
for periodic boundary conditions given in table 5 .  These results can be discussed in 
terms of representations of the N = 1 and N = 2 superconformal and the ZF algebra. 
Applying the above-mentioned methods we determine the critical properties of H in 
three steps. 

(i) The normalisation factor 6 is calculated following the method of von Gehlen 
et a1 (1986), from the lowest eigenvalue with P = 2 in sector RI:,+; see tables 2 and 3. 

(ii) The central charge c can be determined from the correction to the ground-state 
energy (Blote et al 1986, Affleck 1986). The free energy per site at the critical point 
for periodic boundary condition is 

- E , ( N ) / N = A + & T C N - ~ + .  . . .  (5.1) 

This relation provides a direct method of determining c ;  see tables 2 and 3 and figure 
1. At the ZF point we find c = 1.25(1) and at the vector Potts point c =  l.OO(1). 
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Table 2. Normalisation 5 and central charge c along the line 6 = 1 for various values of E. 

E 2 1 -0.95 -3 3 -0.1 0.1 0.2 1 

C 1.00 (2) 1.00 (3) 1.11 (4) 1.21 (3) 1.24 (2) 1.24 (2) 1.20 (2) 

_ _  
5 0.126 (3) 0.82 (1) 1.59 (1) 2.11 (1) 2.51 (1) 2.13 (1) 4.132 

Table 3. Normalisation 5 and central charge c in the ZF point ( E  = 1 / A ,  6 = f )  and vector 
Potts point ( E  = S = 0). 

E ,  6 1/d3, f 030 

C 1.25 (1) 1.00 (1) 
t 3.002 (2) 1.414 (2) 

(iii) We compare the possible anomalous dimensions (4.11), ( 12) and (4.27) with 
the numerical extrapolants gk (Schiitz 1987, von Gehlen etal  1988, table 5 ( a - f ) ) .  
Additionally it is necessary to control the degeneracies of the excited states. With that 
it is ascertained which algebra describes the underlying symmetry and which of the 
possible representations are actually realised. 

In order to study the appearance of representations of these algebras, we first 
examine the operator content in the region B with c = 1. It has been conjectured and 
checked numerically (von Gehlen et aZl988) that the operator content remains constant 
at A = 1 in the c = 1 region and we present it in table 4(a-d),  column 2 for A = 1 in 
terms of representations of the Virasoro algebra. 

We start with the discussion of the spectrum for free boundaries. The spectrum 
HF is given by the I R  of one Virasoro algebra. Comparison of the anomalous 
dimensions (table 4(a), column 2) with those possible for N = 1 supersymmetry (4.11) 
and with the degeneracies calculated from the character formulae (4.13) shows that 
the spectrum is N = 1 supersymmetric if different sectors are combined (column 3). 
The combination of sectors, if necessary even for different (toroidal) boundary condi- 
tions, will also prove useful for the interpretation of the spectra below. We find that 
the spectrum of H F  in the c = 1 region B is composed by the operators (O):’, (1):’ 
and 2(&)ys. They form a closed subalgebra. 

We now investigate the occurrence of higher symmetries. Making use of the 
decomposition (4.23) one finds N = 2  SUSY (column 4) by further combination of 
sectors. The observation of N = 2 supersymmetry is due to the simultaneous appearance 
of the N = 1 superconformal algebra and the U( l )  Kac-Moody algebra known to be 
present in the c = 1 region of any n-states quantum chain (von Gehlen et a1 1988). 

The question arises whether the combination of all sectors is given by the vacuum 
representation [O]’ of higher algebra (column 5). We keep this idea in our mind and 
turn to the consideration of the toroidal spectrum. 

Here the representations of two commuting Virasoro algebras determine the possible 
critical exponents. Studying the sectors of the periodic spectrum (table 4( b ) ,  column 
2) the highest weights (4.11) are recovered, but it is not supersymmetric, as the 
degeneracies do not agree with those from the character formulae (4.13). However, 
the combination of certain spectra for periodic and antiperiodic boundary conditions 
HSUSY = Ho+ H 3  shows the ‘correct’ degeneracies and thus is N = 1 supersymmetric 
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(column 3). HSUSY is given by 

(0, o ) y @  (1, o ) y s @  (o,l)ys@ (1, l )rJS02(& ,9y"4(& :)p@2(&, &)p, ( 5 . 2 )  

As above, further combination of sectors yields N = 2 SUSY (table 4(b), column 4). 

Table 4. ( a )  Operator content in region B for free boundary conditions in the sector H E  
in terms of representations of the Virasoro algebra (A)" (von Gehlen et a1 1988), the N = 1 
superconformal algebra (A)NS3R,  the N = 2 superconformal algebra (A)YS'R'T and the 
multiplet fields (5.5) [A]'. ( b )  As ( a )  for HSUSY (periodic and antiperiodic boundary 
conditions). (c )  As ( a )  for H C  (cyclic boundary conditions). ( d )  As ( a )  for H T  (twisted 
boundary conditions). 

H:+ Q (4k2)"0 Q (6r2)"=: {0} 
k r O  G I  

$ (5(2r+ I)')"=: {$} 
.an J 

@ ( ( 2 k +  1)')"O @ (6r2)"=: {1} 
k r O  1 3 1  

HC- 

H;- = H{+ 

2(69Y 2G),NS I H:QH: 2[ @ (6( r +a)')"] =: 2{4} 

H:O H: 2[$ (6(r+$)2)V]=:2{i} 
r c z  

r c z  

2 ( L  L)R 
24, 24 1 

H@H: 2[ @ ( t ( r +  i)', $(r  +i)') " 
,ZO 

0 Q (;(r+d)2,$(r+2)2)V] 
PZSO 

= : 2 [ { L  '}+{a ZS}] 
24, 24 24, 24 

2[{' =}+{a L}] H:O H: 24, 24 24, 24 

2(L L ) R  
24, 24 2 
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Table 4. (continued) 

[L L I T  
16, 16 2 

HY; @ ((Sk+1)’/16, ( S k + 1 ) 2 / 1 6 ) v @  @ ( (Sk+3)’ /16 ,  (8k+3)’/16)”=: {&,&}@{&,A} 
k c Z  k c Z  

H?: {ik i%}@{i%, $1 
H!: 
H 3c 

= H:? 
= H:: 

[L L I T  
16, 16 2 

[L L I T  
16, 16 2 

Fields with fractional spin s = m/6 appear in the spectra for the remaining cyclic 
boundary conditions (table 4(c)). In the spectrum 

we find the operator content (in terms of N = 1 SUSY IR):  

(5.4) 

Now we come to the problem of higher symmetries in the model. We introduce 
multiplet fields [hP] constructed out of (4.19): 

P + 2  

xP= c x ; t m = x ; - ,  (5.5) 
m=-p-1  

and we get for c = 1 ( p  = 1) 

a=O [ O l S  = (0; O),””(&; :)yo(;; -;)y 
= ( 0 ) f ” s @ 2 ( & ) ~ s 0  (1,y 

[%I -(a, d l  @(&; -a):@(%; 212 (5.6) 1 S -  1 . 1  R 3 1 R  a = -1 2 

= 2(&);@2(2);. 

Investigating table 4 the operator content of HF and H‘ turns out to be given in terms 
of these multiplets. We find 

HF [0lS (5.7) 

H‘ LO, OIS@[h, &IS. 
and 

Thus H F  and H‘ are part of a higher, yet unknown, algebra which includes the N = 2 
superconformal algebra as a subalgebra. Its representations are given by the character 
expressions (5.5). 

The representations which are still missing according to table 2 are found in the 
spectra H’ with twisted boundary conditions (table 4 ( d ) ) .  Combination of the sectors 
leads to the I R  (4.24) of the twisted N = 2 superconformal algebra. 
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We now turn to the ZF point E = 1/&, 6 =$  on the supersymmetric line SIS2 with 
c = $. While central charge and anomalous dimensions remain constant along the curve 
S,S2,  they change moving away from it. 

Again we start the discussion by examining the spectrum for free boundary condi- 
tions. The same combination of sectors which led to N = 1 SUSY in the c = 1 region 
(table 4( a ) )  shows that (Schutz 1987) 

( 0 ) ~ s 0 2 ( ~ ) f " s 0 ( 3 ) f l s  (5.8) 
gives the operator content for free boundary conditions. As above, these operators 
form a closed subalgebra. Combining the sectors with positive and negative charge 
conjugation one recovers ZF symmetry: 

80,+0 80, -  = (o)ZF 

(5.9) 

83,,+0 g3,- = (2)zF. 
The charge Q of (At:) (4.26) is given by m / 2  mod 6. 

In the case of toroidal boundary conditions we observe a structure similar to that 
in the c = 1 region. First we turn to the representations of N = 1 SUSY. H o  (see table 
5(a-f)) itself is not N = 1 supersymmetric. Notice the 'wrong' degeneracies D for the 
descendants of the magnetic operator (&, &) (table 5(d) )  and an additional 'forbidden' 
field, (e, e). Once again, the combination with the antiperiodic spectrum clears the 
situation. H S U S Y =  Ho+ H 3  (table 5(d) )  gives the desired degeneracies of the excited 
states of (&, &). In terms of N = 1 I R  the operator content of the spectra HSUSY, H' 
and H r  = H q C  is given by 

(5.10) 

(5.11) 

(5.12) 
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Table 5. ( a - f )  Operator content along line S,S2 in terms of IR ( A +  r, h+ f )  of N = 1 SUSY 
for toroidal boundary conditions. P denotes the momentum of a state, x the critical 
exponent with degeneracy D(A,  r ;  A, f ) .  %f8 are the finite-size scaling estimates in the 
sector HE at the ZF point 2 ( E  = 1/&, S = f). Exponents marked by' are fixed by definition, 
i denotes the thermal exponent and * the magnetic exponents (order parameters) xQ in 
the sector Q. 

o.o+ 
0.501 (2) i  
1.50 ( 5 )  
2.515 (3), 2.6 (1) 
3.00 (2) 
3.6 ( l ) ,  3.6 (1) 
4.0(1) 
4.40 (2), 4.6 (3), 4.6 (4) 
1.50 (1) 
2.64 (1) 
3.4 ( l ) ,  3.50 ( 5 ) ,  3.7 (1) 
2.0+ 
2.44 (4), 2.63 (1) 
3.00 (1) 
3.44 (4) 

~ 

0 2.5 
3.5 
4.5 

1 1.5 
2.5 
3.5 

2 2.5 
3.5 
4.0 
4.5 

3 3.0 
3.5 
4.5 

- 
2 

- 
3 

2.505 ( 5 ) ,  2.505 ( 5 )  
3.48 ( l ) ,  3.48 (1) 
4.2(1),4.2(1),4.5(1),4.5(1) 
1.507 (1) 
2.47 (1) 

2.50 (5) 
3.45 ( l ) ,  3 .6(1)  
4.1 (2) 
4.50 ( 5 ) ,  4.5 (2) 
3.004 ( 5 )  
3.4 ( l) ,  3.50 (4), 3.5 (1) 
4.4 ( l ) ,  4.4 (1) 

3.47 (11, 3.55 (11, 3.55 ( 1 )  

0 0.1667 
1.1667 
1.6667 
2.1667 
2.6667 
3.1667 
3.6667 
4.1667 
4.6667 

1 1.1667 
2.1667 
2.6667 

- 
4 - 

1 

- 
1 

0.1666 (1)' 
1.172 (2) 
1.666 (2) 
2.164 (2) 
2.70 (2) 
3.13(2), 3.16(2), 3.24(4), 3.26(4) 
3.64 (4) 
4.0 (2), 4.1 ( l ) ,  4.12 ( 5 ) ,  4.16 (5), 4.2 (3) 
4.78 ( 5 )  
1.165 (2) 
2.14 (3), 2.25 (3) 
2.65 (3) 
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Table 5. (continued) 

P x  (2 96, 2) 96 (4' 969 4') 96 s3 P )  
( d )  

0 0.1042 1 
0.8542 - 
2.1042 4 
2.8542 - 

1 1.1042 2 
1.8542 - 
3.1042 8 

2 2.1042 4 
2.8542 - 

- 
1 

4 
- 

- 
4 

0.103 (1)* 
0.857 (3) 
2.10 ( l ) ,  2.17 (1) 
2.857 (3), 2.857 (3), 2.88 (2), 
3.00 (5) 3.9 (2), 4.0 (2), 4.06 (3) 
4.06 (3), 4.07 (4), 4.16 (4) 
1.109 (3) 
1.860 (5), 2.0 (1) 
2.9 (3), 3.08 (3), 3.20 (5), 
3.2 (1) 
2.10 (2), 2.12 (2) 
2.80 (3), 2.86 (3), 3.0 ( l ) ,  
3.0 (1) 

0.853 (4) 
2.10 (51, 2.10 (5) 
2.77 (3), 2.82 (31, 2.82 (31, 
2.84 (2), 4.0 ( l ) ,  4.0( l ) ,  
4.0 ( l ) ,  4.0 (1) 
1.105 (5) 
1.80 (2), 1.84 (1) 
3.0 ( l ) ,  3.04 (4), 3.12 (2), 
3.20 (5) 
2.09 ( l ) ,  2.13 (1) 
2.75 (5), 2.78 (3), 2.85 (1) 
2.9(1) 

("A) (67 67) (23 23) 
32,  3 2  32, 3 2  32, 3 2  

0 0.1875 1 
1.4375 - 
2.1875 1 
3.4375 - 
4.1875 4 
5.4375 - 

1 1.1875 1 
2.4375 - 
3.1875 2 
4.4375 - 

0.1873 (1)* 
1.441 (5) 
2.185 (1) 
3.40 (2), 3.40 (2), 3.47 ( l ) ,  3.48 (1) 
4.14(5),4.14(5), 4.18(2),4.18(2),4.3(1) 
5.2 ( l ) ,  5.2 ( l ) ,  5.2 (2), 5.2 (2), 5.2 (2), 5.40 (51, 
5.40 (5), 5.5 ( l ) ,  5.5 ( l ) ,  5.6 (3) 

2.40 (2), 2.46 (2) 
3.18 ( l ) ,  3.18 (1) 
4.3 ( l ) ,  4.36 (5), 4.37 (3), 4.45 (5) 

1.188 (1) 

(23 23) (A 67) (67 A) 
(f 1 
P x  32, 3 2  32, 3 2  32, 3 2  

0 1.4375 1 - - 1.44 (1) 
3.4375 4 - - 3.40(2), 3.40(2), 3.47(1), 3.48(1) 
4.1875 - 2 2 4.14(5), 4.18(2), 4.18(2), 4.32(5) 
5.4375 9 - - 5.2 ( l ) ,  5.2 ( l ) ,  5.2 (2), 5.2 (2), 5.2 (2), 5.40 (5), 

5.40 (5), 5.5 ( l ) ,  5.5 ( l ) ,  5.6 (3) 
1 2.4375 2 - - 2.40 (2), 2.46 (2) 

3.1875 - - 1 3.18 (1) 
4.4375 6 I - 4.3 ( l ) ,  4.36 (5), 4.37 (3), 4.45 (5) 

2 2.1875 - - 1 2.18 (1) 
3.4375 3 - - 3.3 ( l ) ,  3.45 ( l ) ,  3.46 (2) 
4.1875 - - 2 4.17 (3), 4.2 (1) 

Again all possible representations of the N = 1 superconformal algebra with spin 
s = m/6 are realised by suitable combinations of sectors. 

Now we settle the connection with ZF invariance. Equation (4.27) explains the 
appearance of the additional field (g, s) in the periodic spectrum as a representation 
of the ZF algebra and using (4.32) we find that H' is built from ZF IR. In fact, 
evaluating the character formula (4.28) and comparing with the degneracies obtained 
numerically shows that all sectors with cyclic boundary conditions have ZF symmetry 
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with Z,OZ, charge (Q, -6) as predicted (4.31). Charge conjugation decomposes the 
1 even doublet and I odd singlet (4.32) with charge 0 and 3, respectively, into N = 1 
supersymmetric representations. The representations in the twisted sector can be 
constructed out of representation of a twisted ZF symmetry (Zamolodchikov and Fateev 
1986, Ravanini and Yang 1987b). 

The multiplet fields {h , }  with highest weight (4.30) of the form 
n 

x/= c x:;=xn-r 
m = - n + l  

(5.13) 

where 0 6 1 6  n, -n - 1 6 m S n and 1 - m = 0 mod 2 generate the ZF Hilbert space and 
describe the spectrum He.  We have 

l = O  (0) = (0)ZFo2(3"F@2(~)ZF0 (2)"" 
= (0)ys02(2) (3) 

(5.14) 

The spectrum is built by the order and corresponding disorder fields (4.30) U / ,  p / ,  
1 = 0, .  . . , n - 1, and the independent fields (4.26) obtained by applying the generators 
of the parafermionic algebra. 

As above, the combination of sectors, i.e. interpretation of primary fields of one 
algebra as descendants of highest weight I R  of a higher algebra, leads to higher 
symmetries. Due to the constancy of the critical exponents N = 1 superconformal 
invariance and ZF symmetry do not vanish even if one moves away from the ZF point 
along curve S,S, . 

6. Summary and conclusions 

Applying finite-size scaling methods we numerically examined the operator content of 
the six-states quantum chain given by (1.1) at the critical temperature A = 1 in the 
domain of ferromagnetic interaction. We gave a phenomenological survey over the 
critical behaviour of the model. In the context of the classification of two-dimensional 
conformally invariant field theories we discussed the infinite Lie algebras which describe 
the system. 

Numerical diagonalisation of the Hamiltonian H ( E ,  6)  (1.1) for different values of 
the coupling constants and application of finite-size scaling methods show that H 
defines a model with varying central charge c 3 1 of the Virasoro algebra. We found 
a region B (figure 1) in the space of coupling constants where c = 1. The critical 
exponents in this region remain constant with respect to the couplings and are given 
by the Gauss model. In a region A with c = 2 runs a curve S,Sz with constant exponents. 
Here we present the full operator content for free and all toroidal boundary conditions. 
The leading magnetic exponents and the thermal exponent coincide with those of a 
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multicritical point in the RSOS model with p = 6 describing the continuous melting of 
a 6 x 1 commensurate phase to a disordered phase (Andrews er a f  1984, Huse 1984). 
Furthermore, at the point D, defined by E = 2u/3&, 6 = u/2, u +. CO, where the system 
decouples into the Ising and three-states Potts model, one has c = 1.3. Between B, 
S,S2 and D the central charge and the critical exponents change without a marginal 
operator to cause this effect. We find that the model has different types of second-order 
phase transitions, depending on the choice of coupling constants. 

By successive combination of sectors of the model corresponding to the addition 
of characters of a given algebra we obtain representations of higher algebras classifying 
possible field theories. In B we find N = 1 SUSY, by further combination N = 2 SUSY 

and, finally, representations (5.5) of a new algebra which contains the Ai = 2 supercon- 
formal algebra as a subalgebra. Along SlS2 the system is N = 1 superconformal and 
ZF invariant. The connection of these two symmetries could be clarified in terms of 
character identities (4.32). The modular invariant periodic spectrum in the c = 1 region 
coincides with that found by Ravanini and Yang (1987a) for N = 2 supersymmetric 
models. Along the curve S,S2 it corresponds to one of the possible solutions for N = 1 
SUSY (Kastor 1987, Cappelli 1987) or for ZF symmetry respectively (Gepner and Qiu 
1987). However, these models do not exhibit the full symmetry, since only a subspace 
of the corresponding Hilbert space is modular invariant. 

Building up modular invariant partition functions with appropriately chosen 2, 
boundary conditions (X3, C, X3C) for the Hamiltonian ( l . l ) ,  all the remaining solutions 
of modular invariance for N = 1 SUSY with c = 1 (one more solution) and c =: (two 
additional solutions) (Cappelli 1987) can be constructed. In the c = 1 region we obtain 
the scalar-type partition function already found in the Ashkin-Teller model with 
periodic boundary conditions for a special value of the coupling constant (Baake et a1 
1987, Yang and Zheng 1987). Along curve SIS2 one obtains the other two solutions 
for N = 1 SUSY with c =$. Whether there exist systems which are described by these 
partition functions is not yet known. 

These remarks imply that the same critical exponents which appear in the c = 1 
region also appear in the Ashkin-Teller model since there also SUSY was found (Baake 
er a1 1987, Yang and Zheng 1987) for a special value of the coupling constant. However, 
they do not belong to the same universality class. In fact, nowadays it has become 
clear that a universality class is not characterised by some critical exponents (apart 
from the other characteristics), but rather by specific sets of exponents, namely sets 
which lead to a modular invariant partition function of the system. The six-states 
quantum chain and the Ashkin-Teller model provide an illustration of this change in 
the concept of universality. 
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